Rapid Recovery of Cyanobacterial Pigments in Desiccated Biological Soil Crusts following Addition of Water

نویسندگان

  • Raeid M. M. Abed
  • Lubos Polerecky
  • Amal Al-Habsi
  • Janina Oetjen
  • Marc Strous
  • Dirk de Beer
چکیده

We examined soil surface colour change to green and hydrotaxis following addition of water to biological soil crusts using pigment extraction, hyperspectral imaging, microsensors and 13C labeling experiments coupled to matrix-assisted laser desorption and ionization time of flight-mass spectrometry (MALD-TOF MS). The topsoil colour turned green in less than 5 minutes following water addition. The concentrations of chlorophyll a (Chl a), scytonemin and echinenon rapidly increased in the top <1 mm layer while in the deeper layer, their concentrations remained low. Hyperspectral imaging showed that, in both wet and dehydrated crusts, cyanobacteria formed a layer at a depth of 0.2-0.4 mm and this layer did not move upward after wetting. 13C labeling experiments and MALDI TOF analysis showed that Chl a was already present in the desiccated crusts and de novo synthesis of this molecule started only after 2 days of wetting due to growth of cyanobacteria. Microsensor measurements showed that photosynthetic activity increased concomitantly with the increase of Chl a, and reached a maximum net rate of 92 µmol m-2 h-1 approximately 2 hours after wetting. We conclude that the colour change of soil crusts to green upon water addition was not due to hydrotaxis but rather to the quick recovery and reassembly of pigments. Cyanobacteria in crusts can maintain their photosynthetic apparatus intact even under prolonged periods of desiccation with the ability to resume their photosynthetic activities within minutes after wetting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of environmental factors determining development and succession in biological soil crusts.

Biological soil crusts play important ecological functions in arid and semi-arid regions, while different crust successional patterns appeared in different regions. Therefore in this study, the environmental conditions between Shapotou (with cyanobacterial, lichen and moss crusts) and Dalate Banner (with only cyanobacterial and moss crusts) regions of China were compared to investigate why lich...

متن کامل

Effect of lichen biological soil crusts on soil properties derived from early Holocene sandy sediments

  Introduction: Biological soil crusts are a community of cyanobacteria, fungi, lichens, and mosses and play key roles in arid and semi-arid regions including carbon and nitrogen accumulation, soil fertility, dust capture, soil conservation and stability. Recent studies show that the formation of biological soil crusts on mobile dunes areas is extremely difficult due to low vegetation cover, st...

متن کامل

Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman.

Biological desert crusts are relatively common in the arid deserts of the Sultanate of Oman; however, little is known about their microbial community composition and role in soil fertilization. We compared three crusts from geographically different locations for their soil texture, bacterial community structure, pigment composition and nitrogenase activity. The crusts were growing on alkaline (...

متن کامل

Cyanobacterial community composition in Arctic soil crusts at different stages of development

Cyanobacterial diversity in soil crusts has been extensively studied in arid lands of temperate regions, particularly semi-arid steppes and warm deserts. Nevertheless, Arctic soil crusts have received far less attention than their temperate counterparts. Here, we describe the cyanobacterial communities from various types of soil crusts from Svalbard, High Arctic. Four soil crusts at different d...

متن کامل

The Protective Effect of Lichen in Maintaining Moisture and Modulating the Temperature Fluctuations of Soil Susceptible to Wind Erosion

Extended abstract   1- INTRODUCTION   Soil erosion is one of the most destructive processes of arid and semi-arid areas, which leads to desertification in a large area of the region. In windy areas, the wind in the region increases the probability of wind erosion. Soil moisture and soil temperature are the two effective factors in soil erosion control. Vegetation is also one of the effectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014